language
English
العربية
বাংলাদেশ
Български
Hrvatski
Česky
Dansk
Nederland

Slovenski
Filipino
Suomi
Français
Maori

Georgian

Deutsch
Ελλάδα
ישראל
इंडिया
Magyarország
Ísland
Indonesia
Irlanda
Italia
日本語
Sovensko
Հայաստան
한국
Kyrgyz
ປະເທດລາວ

Latvian
Lithuanian
Luxembourgish

Macedonian
Малайская
Maltese
Монгол улс

ဗမာ

नेपाल
Norge
ایران
Polska
Portugal
România
Российская
Србија

Србија

Bosanski
Slovenian
Беларус
España
Sverige
Точик
ประเทศไทย
Türk
Azərbaycan
Uzbek

Việt Nam
APPLICATION INDUSTRY
APPLI
INDUSTRY
WIND POWER CONVERTERS DISSIPATE HEAT
WIND ENERGY CONVERTER COOLING SOLUTION(DCDC 3000W transient solution)
Converter simulation model and related parameters:
Converter simulation model and related parameters:
The infineon internal structure diagram and heating element diagram:
diode:34W; IGBT:91W; total 1500W;
Assuming heat-conducting medium:
7762 thermal grease, thickness is 0.2mm, K=4W/m*K.
Heatsinkparameter:
Substratesize:462*220*15mm;
Finthickness:1.5mm;
Finqty:92fins;
Finheight:87mm;
Material:AL1060;
Process:Skived;
Runsfor16cycles,atotalof960s。
Heat sink design simulation model and related parameters
Workingstatusofheatsource:
0-29s:0%;
29s-30s:from0%to100%;
30s-59s:100%;
59s-60s:from100%to0%;
Run60scircularlyatacycle.
The diagram of Tb temperature over time: ( airflow:500m^3/H)
The change diagram of surface temperature over time of IGBT core components:
Airflow: 500m^3/H, IGBT node temperature = core element surface temperature + core element power * core element
The diagram of Tb temperature over time: ( airflow:600m^3/H)
The diagram of Tb temperature over time: ( airflow:700m^3/H)
The diagram of Tb temperature over time: ( airflow:800m^3/H)
The time cycling variation simulation results of highest surface temperature of heat source bottom radiator:
Simulation results of heat sink pressure loss and flow: